

Measuring Headphone Frequency Response

Werner Dahm

The Basics

- Tools and Equipment you'll need to measure headphone response
 - **REW:** Room Equalization Wizard
 - M3DMixer only for OS X 10.6 and older (10.7 doesn't need it)
 - Phantom Power Supply (9V)
 - Panasonic WM-61a electret capsule mic
 - One or two RCA male to 1/8" female cables
 - One male 1/8" TRS to male 1/8" TRS cable
 - Headphones to measure

Phantom Power Supply

Using a reference schematic from a friend, determined the correct components

Mic calibration

Since the Panasonic WM-61a is a well-regarded measurement electrec capsule mic, it has its own calibration file readily available online

REW

- Before measurements are accurate, the user must calibrate their recording system
 - Includes everything before the headphones and mic
 - DAC/Soundcard
 - Amp
 - Phantom power supply
- We do this calibration by creating a feedback loop and using the software to make corrections to account for non-linearity in the system

Feedback Loop

3.5 mm Stereo Plug

(Ground Pin Cut to Minimum Length Practical)

(Tip and Ring Shorted, and Connected to "Hot" of WM61A;

Shank Connected to "Cold" of WM61A, Through Casing)

Panasonic WM61A, O.D. = 6 mm = 0.2362", Height = 4 mm (Clearance = 0.25 - 0.2362 = 13.8 Mills, 0.0069 Mills in Radius) (Note: 0.235 I.D. is Probably 15/64 = 0.2344; 1.8 Mill Press Fit) (Note: ~5/16" Clearance Between Plastic Sheath and WM61A)

Bill of Materials:

Panasonic WM61A = Digi-Key P9925-ND - \$1.86

3.5 mm Stereo Plug = Radio Shack 2740858, ~\$3.99, (Strain Relief Discarded)

3.5 mm Stereo Plug = Neutrik NY8231G, Allied 514-8001, ~\$1.39, (Alternative)

3.5 mm Stereo Plug = Neutrik NY 8226, Allied 514-0024, -\$0.86, (Alternative)

3.5 mm Stereo Plug = Neutrik NY8231B, Allied 514–8003, -\$1.18, (Alternative)

Tooling:

Note:

1/4 Drill Bit = Vermont American 12743 - \$3.49

"Hot" Wire Insulation Length = 0.455" "Cold" Wire Insulation Length = 0.320" Out and Tin Prior to Assembly

Image from John Conover's site: http://www.johncon.com/john/wm61a/

Taking Measurements

- Connect the mic to the left channel of the RCA to 1/8" male cable
- Connect this cable to the input (mic) side of the phantom power supply
- Connect the 1/8" male to male cable from the phantom power supply output to the mic line-in on the laptop
- Hook up the headphones as if you were going to listen to music (Audio Out USB \rightarrow DAC \rightarrow Amp \rightarrow Headphones)
- Position the mic in your ear carefully, and place headphones on your head

Interpreting the Graphs

- After measurements have been taking, set up of the limits needs to be done in order interpret the graphs correctly
- The y-axis (dB) should be in 5 dB intervals
- The x-axis (Hz) should range from 20Hz to 20,000Hz in a logarithmic scale
- The offset must be set to general "guess" where o dB might be to obtain a good representation of the data

Qualifying Results Graphically

Can see changes in the frequency response due to modifications with consistent measurement techniques

Different Plots

- REW can plot data in many different ways
- Need to choose the type of graph given your specific interest
- Types of graphs available:
 - SPL & Phase
 - All SPL
 - Impulse, Filtered IR, GD, RT60, Decay
 - Waterfall
 - Spectrogram
 - Scope

Future Work

